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Why This Study?

® From previous work with Roger Newell, it 1s clear that
an important part of the water quality value of oysters,
specifically N sequestration/transformation, is related
to microbial processes rather than just the N content of
harvested tissue

Most studies, including our own, have either used cores
adjacent to reefs or experimental core simulations of
reef organic matter loading

This is the first study investigating reef N cycling that
includes the whole reef community!




Nutrient Bioassimilation Capacity of Aquacultured Qysters:
Quantification of an Ecosystem Service

Colleen B. Higgins, Kurt Stephenson, and Bonnie L. Brown*

Table 3. Nutrient mass load predictions for total nitrogen, total phos-
phorus, and total carbon bloassimilated by 10° aquacultured Eastern

oysters of various harvest sizes, generated by models for nutrient con-
tent of an average aquacultured oyster based on shell total length.

For 10° aguacultwred
oysters

mm kg
508 43
762
1016
508 B
762 19
1016 41
508 1263
762 3833
1016 8306

Mutriant

1 TC total carbon; TH, total nitrogen: TP total phosphonues.
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NITROGEN REMOVAL AND SEQUESTRATION CAPACITY
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Study Sites
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Methods »

Design:
m 2 sites: restored and non-restored

= Sampling periods: Nov 2009; Apr, Jun
and Aug 2010

= 4 replicate sample trays per site

Deployment and Retrieval:

m Trays (0.1 m?) filled with material from
site and embedded in substratum

m BEquilibrate 2 2 weeks
m Trays capped underwater

m Brought to surface and transported to
Horn Point Laboratory

m Sample included sediments and a portion
of the overlying water column




Methods

m Placed in waterbath and bubbled with air prior to incubation to bring
oxygen levels to saturation

® 500-hUm mesh lid

» Temperature and salinity matched field conditions and held constant

m Stirring lid added at start of incubation
= No significant exchange of water or dissolved gases

m All incubations started < 5 hrs after tray was capped in the field




Methods ‘

Faunal Analyses:

m Tray contents sieved and all
organisms retained on 1-mm mesh
analyzed

m Data collected for all major faunal
oroups:
= [dentification to major taxonomic group
® Abundance
® Biomass
= Nitrogen
® Phosphorus

m Carbon




Denitrification
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variability
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Comparisons to Other Ecosystems

» Denitrification rates on restored reefs are among highest rates reported

Ecosystem

Location

Denitrification

Rate
(wmol N 2 Iy!)

Source

Present Study
Opyster Reef - Restored - Subtidal

Oyster-related Studies
Oyster Reef - Natural — Intertidal
Oyster Aquaculture - Underlying sediments
Simulated oyster biodeposition

Choptank River and) or Chesapeake Bay
Soft sediments - Fine grained
Soft sediments - Fine grained

Mid-Atlantic
Marsh
Submerged Aquatic Vegetation
Marsh
Intertidal Flat
Subtidal Flat
Wetland - 1 year post-construction
Wetland - 2 years post-construction

Global — Rates During Warmest Mont)
River
Estuary
Lake
Coastal Ecosystem
Ocean

Choptank River, MD

Bogue Sound, NC
Chesapeake Bay, MD
UMCES - HPL

Choptank River, MD
Chesapeake Bay

Patuxent River, MD
Bogue Sound, NC
Bogue Sound, NC
Bogue Sound, NC
Bogue Sound, NC
South River, NC
South River, NC

24 published studies
24 published studies
21 published studies
25 published studies
13 published studies

253 — 1,592

~31-136
4-130
24 - 51

0-160
0-26

38 —110
~67 — 156
~50 — 108

~12/—91

~1-30

50 — 278

50 — 657

0 — 3,400
1-596
1-312

0.05 — 141

1-60

Present Study

Piehler and Smyth (2011)
Holyoke (2008)
Newell et al. (2002)

Owens (2009)
Kemp et al. (1990)

Boynton et al. (2008)
Piehler and Smyth (2011)
Piehler and Smyth (2011)
Piehler and Smyth (2011)
Piehler and Smyth (2011)

Poe et al. (2003)
Poe et al. (2003)

Pina-Ochoa and Alvarez-Cobelas (2006)
Pina-Ochoa and Alvarez-Cobelas (2006)
Pina-Ochoa and Alvarez-Cobelas (2006)
Pina-Ochoa and Alvarez-Cobelas (2006)
Pina-Ochoa and Alvarez-Cobelas (20006)




Oyster Biomass
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m Historic oyster bars
dominated Chesapeake
shoals

They often were found
adjacent to deeper
water (which 1s now
hypoxic or anoxic)

If they still existed,
they would focus
remineralization 1nto
zones with higher O,,

meaning more coupled

nitrification-
denitrification.

The areas shown ang 107 oyEbar

management purpases anly, For T%u{_ﬁ
the: afficial bowndanes, corsul A E
the afficil Matural Cyster Bar (NOB) Chart. '

«  Choplank Rier

-

Figure 1, Maryland Higtoric Oyster Bottom, Depiction based on the MDNR gpatial
data file - MDOYSBRS. Shaded regions are named oyster bottom



Newell, RIE, TR Fisher, RR
Holyoke and JC Cornwell,
2004. In: The comparative
Roles of Suspension Feeders in
Ecosystems (eds. Richard
Dame and Sergej Olenin),
NATO Science Series: 1V -
Earth and Environmental
Sciences. Kluwer Academic
Publishers, Dordrecht, The
Netherlands.
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This all assumes.....

Restored marshes = natural marshes
100 oysters m™
We have oyster and wetland denitrification seasonality correct

That denitrification would not occur without oysters: 1.e. algal
sedimentation into deeper hypoxic bay environments

Similar restoration at in Choptank River

oyster denitrification

wetland burial +
denitrification

0 1000 2000 3000 4000 5000 6000 7000 8000

Acres of restoration to remove 1% of upper Chesapeake N budget

MD historic oyster acreage ~ 200,000-300,000 acres




1 Days 1o Filter Maryland's
|Portion of Chesapeake Bay
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The acreage is both intimidating
and encouraging!

m  Thanks to Oyster
Recovery Program,

of acreage, there 1s a clear MD Sea Grant,
> NOAA NERRS,

water quality benetit with Mirant Energy

Corporation

m Although you need a lot

eaCh dACrc Roger Newell for

sharing ideas and

] I‘:iStOf]:CﬂHY, OYSterS COU.ld getting me involved in

this!

have been a dominant
biogeochemical control!




Ongoing Activities

m VIMS Wachapreague — Lynnhaven intertidal oyster
fluxes — Kellogg

VIMS Wachapreague — TNC-funded. Fluxes in beds of
different density — Kellogg, VA Coastal Reserve

VIMS Wachapreague — NOAA-funded. Fluxes in beds
of different density, mouth of Onancock Creek —
Kellogg,

Horn Point — Newell, Cornwell, Sanford. Nutrient
cycling, physics in Marinetics aquaculture site. Similar

work 1n Maine 2012




